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A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after 

Traumatic Brain Injury 

 
Principal Investigator: Pedram Mohseni, Ph.D. 

Department of Electrical Engineering and Computer Science, Case Western Reserve University 

 

Co-Principal Investigator: Randolph J. Nudo, Ph.D. 
Department of Molecular and Integrative Physiology, Kansas University Medical Center 

 

Introduction 

The goal of this project is to use an implantable brain-machine-brain interface to enhance behavioral 

recovery after traumatic brain injury (TBI) by reshaping long-range intracortical connectivity patterns. We 

hypothesize that artificial synchronous activation of distant cortical locations will encourage spontaneously 

sprouting axons to migrate toward and terminate in the coupled region, and that such directed sprouting can aid 

in functional recovery. 

Body 

In this section of the annual report, we describe the research accomplishments associated with each task 

outlined in the approved Statement of Work. 

1. Electronics Development 

For Tasks 1.1 and 1.2, we decided to use the same integrated circuit (IC) previously developed for 

rodent studies in constructing the microsystem for non-human primate studies. This is because the capabilities 

of the rat IC (e.g., spike-stimulus time delay range, stimulus current parameters, etc) are deemed to be suitable 

for the initial round of experiments with non-human primates. Further, we already have >10 functional ICs from 

the original round of IC fabrication, obviating a need for re-fabricating and re-characterizing the IC for non-

human primate studies. 

2. Microsystem Packaging 

For Tasks 2.1 and 2.2, NeuroNexus Technologies (Ann Arbor, MI) was identified as a reliable 

commercial supplier for silicon-microfabricated microprobes for recording and stimulation. Further, Flexible 

Circuit Technologies (Plymouth, MN) was identified as a reliable commercial supplier of miniature, rigid-flex 

substrates. We have also previously worked with ProtoConnect (Ann Arbor, MI) for die attachment, 

encapsulation, wire bonding, and assembly of all the components onto the substrate. Efforts are now focused on 

modifying the microsystem assembly and packaging for ambulatory experiments with non-human primates. 

Specifically, the goal is to fit the revised microsystem inside a custom-designed plastic chamber with internal 

dimensions of 18 mm × 18 mm that will be affixed to the skull of a squirrel monkey. We have also decided to 

move the battery and the wireless transceiver module to a backpack device (mounted on the back of the 

monkey) in order to further simplify the design of the microsystem inside the skull-mounted chamber. The 

microsystem is envisioned to connect to two multi-site, chronically implanted recording and stimulating 

microelectrodes (NeuroNexus Technologies, Ann Arbor, MI) via two microconnectors (Omnetics Corp., 

Minneapolis, MN) in plug-and-play fashion. Acrylic will be used as a biocompatible encapsulant, whenever 

necessary. As stated in the annual report of the Partnering PI, Prof. Randy Nudo, we have already completed the 

design and fabrication of the plastic chambers customized to fit the shape of the monkey skull. This was a 

collaborative effort between the engineering group at CWRU and the neurobiological team at KUMC. 

In this section of the annual report, we describe the research accomplishments associated with tasks from 

previous phases as outlined in the approved Statement of Work. 

Phase I (1-12 months), Task 1 (Electronics Development) 
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1.3 Design a neural signal processor for real-time stimulus artifact rejection using template subtraction 

technique with power consumption ≤5 µW. 

An infinite impulse response (IIR) temporal filtering technique for real-time stimulus artifact rejection 

(SAR) based on template subtraction was developed. A system architecture for the IIR SAR algorithm was also 

developed, and the operation of the algorithm with fixed-point computation was analyzed to obtain the number 

of bits for the internal nodes of the system, considering dynamic range and fraction length requirements for 

optimum performance. Further, memory initialization with the first recorded stimulus artifact was implemented 

to significantly decrease the IIR system response time, especially when artifacts were highly reproducible in 

consecutive stimulation cycles. The proposed system architecture was hardware-implemented on a field-

programmable gate array (FPGA) and tested using two sets of prerecorded neural data from a rat and an Aplysia 

californica (a marine sea slug) obtained from two different laboratories. The measured results from the FPGA 

verified that the system can indeed remove the stimulus artifacts from the contaminated neural data in real time 

and recover the neural action potentials that occur on the tail end of the artifact (as close as within 0.5 ms after 

the artifact spike). The root-mean-square (rms) value of the pre-processed stimulus artifact was reduced on 

average by a factor of 17 (Aplysia californica) and 5.3 (rat) post-processing. Details of the IIR SAR algorithm, 

its FPGA implementation and testing with prerecorded neural datasets are reported in a manuscript currently in 

press with the IEEE Transactions on Biomedical Circuits and Systems (see Appendix I). 

Key Research Accomplishments 

• Develop a neural signal-processing algorithm for real-time stimulus artifact rejection 

• Implement the algorithm in hardware on an FPGA for real-time operation 

• Prepare and submit a manuscript to IEEE Trans. Biomedical Circuits and Systems. The paper is accepted and 

currently in press. 

Reportable Outcomes 

1- Manuscripts/Abstracts/Presentations: 

• D. J. Guggenmos, M. Azin, S. Barbay, J. D. Mahnken, C. Dunham, P. Mohseni, and R. J. Nudo, “Restoration of 

function after brain damage using a neural prosthesis,” Proc. Natl. Acad. Sci. USA (PNAS), in press. 

• K. Limnuson, H. Lu, H. J. Chiel, and P. Mohseni, “Real-time stimulus artifact rejection via template subtraction,” 

IEEE Trans. Biomed. Circuits and Systems, in press. 

• D. J. Guggenmos, C. Dunham, M. Azin, S. Barbay, J. D. Mahnken, P. Mohseni, and R. J. Nudo, 

“Neurophysiological effects of activity-dependent stimulation following a controlled cortical impact to primary motor 

cortex of the rat,” Program No. 79.12, 2013 Neuroscience Meeting Planner, San Diego, CA, Society for 

Neuroscience, November 2013. Online. 

• D. J. Guggenmos, M. Azin, S. Barbay, P. Mohseni, and R. J. Nudo, “Activity-dependent stimulation drives 

functional recovery after traumatic brain injury in the rat,” Program No. 682.16, 2012 Neuroscience Meeting 

Planner, New Orleans, LA, Society for Neuroscience, October 2012. Online. 

2- Patents and Licenses Applied for/Issued: None issued yet. 

3- Degrees Obtained from Award: None yet. 

4- Development of Cell Lines and Tissue/Serum Repositories: Not applicable. 

5- Infomatics (Databases and Animal Models): None yet. 

6- Funding Applied for: None yet. 

7- Employment/Research Opportunities Applied for/Received: None yet. 

Conclusion 

Rapid progress is being made toward developing smart prosthetic platforms for altering plasticity in the 

injured brain, leading to future therapeutic interventions for TBI that are guided by the underlying mechanisms 
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for long-range functional and structural plasticity in the cerebral cortex. An unprecedented, potent effect of 

activity-dependent stimulation (ADS) on motor performance has been demonstrated in rats with TBI. Statistical 

analysis of the data is complete and includes both un-implanted and open-loop stimulation control groups. Post-

hoc physiological data demonstrate rapid establishment of functional connectivity between the two areas. 

Efforts are currently focused on developing a revised microsystem that would enable the investigation of the 

safety and efficacy of this approach in a non-human primate model of TBI. In parallel, we have also established 

the feasibility of hardware implementation of a neural signal-processing algorithm for real-time elimination of 

stimulus artifacts that can potentially increase the amount of conditioning performed by the microsystem 

between the two cortical regions. 
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Appendix I K. Limnuson, H. Lu, H. J. Chiel, and P. Mohseni, “Real-time stimulus artifact rejection via 

template subtraction,” IEEE Trans. Biomed. Circuits and Systems, in press. 
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Real-Time Stimulus Artifact Rejection Via
Template Subtraction

Kanokwan Limnuson, Student Member, IEEE, Hui Lu, Hillel J. Chiel, and Pedram Mohseni, Senior Member, IEEE

Abstract—This paper presents an infinite impulse response (IIR)
temporal filtering technique for real-time stimulus artifact rejec-
tion (SAR) based on template subtraction. A system architecture
for the IIR SAR algorithm is developed, and the operation of the
algorithm with fixed-point computation is analyzed to obtain the
number of bits for the internal nodes of the system, considering dy-
namic range and fraction length requirements for optimum perfor-
mance. Further, memory initialization with the first recorded stim-
ulus artifact is proposed and shown to significantly decrease the
IIR system response time, especially when artifacts are highly re-
producible in consecutive stimulation cycles. The proposed system
architecture is hardware-implemented on a field-programmable
gate array (FPGA) and tested using two sets of prerecorded neural
data from a rat and an Aplysia californica (a marine sea slug) ob-
tained from two different laboratories. The measured results from
the FPGA verify that the system can indeed remove the stimulus
artifacts from the contaminated neural data in real time and re-
cover the neural action potentials that occur on the tail end of the
artifact (as close as within 0.5 ms after the artifact spike). The
root-mean-square (rms) value of the pre-processed stimulus arti-
fact is reduced on average by a factor of 17 (Aplysia californica)
and 5.3 (rat) post-processing.

Index Terms—Closed-loop neuroprostheses, field-pro-
grammable gate array (FPGA), neural recording, neurostim-
ulation, stimulus artifact rejection, template subtraction.

I. INTRODUCTION

S TIMULUS ARTIFACT REJECTION (SAR) is important
in biopotential recording, whenever stimulation is per-

formed in the same medium in which the recording electrodes
are also placed [1]. This is because the large stimulus arti-
facts can corrupt or mask the neural activity of interest, either
hindering the analysis of stimulus-evoked recorded data [1],
or limiting the efficacy of activity-dependent stimulation for

Manuscript received February 24, 2013; revised May 31, 2013; accepted July
14, 2013. This work was supported by the Department of Defense Traumatic
Brain Injury—Investigator-Initiated Research Award Program under Award
W81XWH-10-1-0741 (to P. Mohseni) and National Institutes of Health Grant
NS047073 (to H. J. Chiel). This paper was recommended by Associate Editor
E. M. Drakakis.

K. Limnuson is with the Electrical Engineering and Computer Science De-
partment, Case Western Reserve University, Cleveland, OH 44106 USA.

H. Lu and H. J. Chiel are with the Department of Biology, Case Western
Reserve University, Cleveland, OH 44106 USA (e-mail: hjc@case.edu).

P. Mohseni is with the Electrical Engineering and Computer Science Depart-
ment, Case Western Reserve University, Cleveland, OH 44106 USA, and also
with the Advanced Platform Technology (APT) Center—A Veterans Affairs
(VA) Research Center of Excellence, Cleveland, OH 44106-1702 USA (e-mail:
pedram.mohseni@case.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TBCAS.2013.2274574

closed-loop operation [2], [3]. Many SAR techniques have been
developed in the past that use the same fundamental principles
for rejection, and the choice of a particular method is typically
dependent on the type of biopotential that is being recorded
and the conditions under which the recording is taking place
[4]–[7].

The two primary classes of SAR techniques are the so-called
blanking and subtraction techniques. There are also some other
techniques that do not readily fit into one of these two cate-
gories [8], [9]. Blanking techniques essentially disconnect the
input of the recording amplifier during stimulation. Stimula-
tion-synchronized blanking can be achieved by several methods,
including grounding the amplifier input [10], [11], connecting
the amplifier input to its output or to that of a sample-and-hold
circuit [12], [13], digitally replacing the contaminated signal
during the artifact interval with an estimate of the uncontami-
nated signal [14], and using high-speed auto-zeroing to maintain
the amplifier output constant during stimulation [15]. In general,
blanking techniques are relatively simple, effective for rejecting
large stimulus artifacts, practical for preventing amplifier satu-
ration, and inherently amenable to hardware implementation for
real-time SAR. The major drawback is that recording is not vi-
able during stimulation.

Subtraction techniques basically subtract a template signal
representative of the stimulus artifacts from the contaminated
neural data to remove the artifacts. These techniques do not
prevent amplifier saturation on their own and often necessitate
running a digital signal processing (DSP) algorithm, rendering
them much more complex than the blanking techniques. The
major advantage is that these techniques make it possible to re-
tain signal information during stimulation.

Generating an accurate template signal has been the main
focus of research in subtraction-based SAR techniques and can
be achieved by several methods, including artifact modeling
based on locally fitted cubic polynomials [5], capturing the ar-
tifact from subthreshold stimulation or from a second recording
site remote from the stimulation site [1], and temporal averaging
of the contaminated data for multiple consecutive stimulation
cycles [16], [17], with the underlying assumption that the overall
shape, dynamic range, and timing (e.g., latency with respect to
the stimulus timing signal) of the stimulus artifacts do not sig-
nificantly vary with time.

Subtraction techniques have the potential to fully eliminate
the artifacts from the contaminated data record, but have to rely
on the generation of an accurate template signal for subtraction,
which in turn necessitates an adjustment in the recording ampli-
fier gain or stimulus intensity to enable non-saturated recording
of the full-scale stimulus artifact. On the other hand, providing

1932-4545 © 2013 IEEE
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a low-impedance discharge path for the stimulation electrode
using active feedback circuitry [18], [19], as well as careful de-
sign of the stimulator in terms of isolation of stimulation chan-
nels and parasitic current injection [20] have been previously
shown to decrease the duration and amplitude of otherwise-satu-
rating stimulus artifacts. But these approaches cannot fully elim-
inate the artifacts on their own, suggesting that an optimal solu-
tion might be to combine them with the subtraction techniques.

Since subtraction techniques typically require a DSP algo-
rithm for the generation of the template signal, they have tra-
ditionally been implemented offline on a home-base computer
post-data acquisition. To execute a subtraction-based SAR algo-
rithm in real time (i.e., as the recording is taking place), a suit-
able template-generation technique should be selected and op-
timized, realized in hardware, and tested with real neural data,
paving the way for ultimately implementing it on a custom in-
tegrated circuit (IC).

We have previously assessed the feasibility of hardware im-
plementation of a subtraction-based SAR algorithm using the
well-established finite impulse response (FIR) and infinite im-
pulse response (IIR) temporal filtering techniques for template
generation [21]. Using MATLAB simulations, both imple-
mentations were shown to be capable of removing stimulus ar-
tifacts upon reaching steady-state, with the IIR architecture of-
fering a more favorable tradeoff among performance, computa-
tional resources, and power consumption at the expense of its
operation speed.

This paper presents our work on hardware implementation
of the IIR system proposed in [21] for a real-time SAR algo-
rithm based on template subtraction. The paper is organized as
follows. Section II describes the SAR algorithm and the cor-
responding IIR system architecture, and Section III analyzes
its dynamic range and fraction length requirements to deter-
mine the number of bits for the internal nodes of the system
in fixed-point computation. Section IV describes the implemen-
tation of the IIR SAR algorithm on a field-programmable gate
array (FPGA), and Section V presents the measured FPGA re-
sults using two prerecorded neural datasets. Finally, Section VI
draws some conclusions from this work.

II. SAR ALGORITHM

To generate a template signal representative of the stimulus
artifact, temporal filtering is employed in which several properly
shifted versions of the input neural data containing the stimulus
artifacts are averaged. This is represented by [21]

(1)

where is the estimated template signal, is the input
neural data containing the stimulus artifacts, is the number of
stimulus artifact waveforms used for template estimation,
are averaging factors that should sum up to unity for the stimulus
artifact and to have the same amplitude (e.g., factors
can be all equal to for standard averaging), and is
the stimulation period. It should be noted that the stimulation
occurrence does not necessarily have to be periodic for correct

Fig. 1. System architecture for the IIR implementation of the template
subtraction-based SAR algorithm. The number of bits in internal operation of
the algorithm is also shown.

operation of the SAR algorithm, as long as it is predictable via
a stimulus timing signal.

An FIR implementation of (1) was previously shown to re-
quire at least memory rows and summations in each
period of the sampling clock, whereas the IIR implementation
would require a single memory row and only three summations
at the expense of much longer system response time [21]. Ini-
tializing the memory with the first recorded artifact can signif-
icantly decrease the IIR system response time for creating an
accurate artifact template signal [22]. Therefore, this paper fo-
cuses on the IIR implementation of the SAR algorithm with
memory initialization.

Fig. 1 depicts the system architecture, comprising
neural-recording front-end circuitry for signal conditioning and
a DSP unit for executing the SAR algorithm. The recording
front-end provides ac amplification, dc input stabilization,
bandpass filtering, and 10b digitization of the recorded neural
signal with fully programmable gain and bandwidth, similar to
what has previously been shown in [3]. The DSP unit, which
is the focus of this paper, provides additional highpass filtering
using an IIR digital filter with adjustable bandwidth to remove
any residual dc offsets or low-frequency noise, and performs
real-time stimulus artifact rejection using template subtraction.
Based on Fig. 1:

(2)

where is the new artifact template signal, is the pre-
vious template signal, and is the input neural data. Therefore,
in the IIR implementation, the stimulus artifact template signal
is retained in the memory, and a new template signal is gener-
ated from the previous template signal and the input neural data
according to (2), which is then subtracted from the input neural
data. The factor plays a similar role to in (1), af-
fecting the IIR system response time and accuracy. As shown
in the Appendix, it can be derived from (2) that the minimum
number of stimulus artifacts, , required to generate an accu-
rate template signal with error less than, e.g., 0.1% is

(3)

where is the initial condition of the memory normalized to
the steady-state artifact template signal. Fig. 2 shows a plot of
versus for four different values of . Clearly, the closer the
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Fig. 2. Minimum number of stimulus artifacts required to generate an accurate
template signal with error ����% as a function of the normalized initial
condition of the memory �� � �� for four different values of � .

initial condition is to the steady-state template signal, the faster
the system response time, showing that the IIR implementation
is particularly effective when stimulus artifacts in consecutive
stimulation cycles are reproducible. In this work, the factor
is selected to be either 1/16 or 1/32, which also allows imple-
menting the multiplication-by- function via a shift to the right
by 4b or 5b, respectively, obviating the need for digital multi-
pliers.

It is worth noting that the artifact template generation tech-
nique in (2) performed by the proposed IIR system is in essence
an exponentially weighted moving average (EWMA) [23],
a statistic tool with a rich history in process monitoring and
quality control charting [24], [25] as well as economics [26]
and industrial quality control [27]. In this paper, we utilize a
real-time implementation of the EWMA for a novel application
in neural signal processing. Section III discusses the perfor-
mance of the IIR SAR algorithm with fixed-point computation
and provides a framework for determining the optimum number
of bits in internal operation of the algorithm.

III. SAR ALGORITHM WITH FIXED-POINT COMPUTATION

When template calculations are performed with floating-
point precision, similar to when the SAR algorithm is executed
offline in MATLAB on a home-base computer post-data
acquisition, the output can be very accurate. However, for
real-time execution of the algorithm in hardware, fixed-point
computation is preferred for simplicity, which then raises con-
cerns about the template signal accuracy due to quantization
noise. In this section, we find the optimum number of bits
in internal operation of the SAR algorithm by analyzing the
dynamic range and fraction length requirements.

In IIR systems, the internal nodes of the structure can po-
tentially overflow, necessitating an adjustment in their dynamic
range to satisfy the L1-norm criteria for preventing an overflow
[28]–[30]. In Fig. 1, consider the signal path from the input
neural data (i.e., ) to each of the four internal nodes of the

Fig. 3. L1-norm estimates at nodes #1–4 for the two selected values of � .

algorithm (i.e., nodes #1–4). Assume the resulting transfer func-
tions and corresponding impulse responses are and ,
respectively. Modeling the memory block as a unit delay, it can
be shown that

(4)

Fig. 3 depicts the L1-norm estimates of the four transfer func-
tions for the two selected values of , where L1-norm is

(5)

As can be seen in all cases, the L1-norm estimates are less
than one, indicating that no additional bits (equal to )
are needed beyond 10b for the internal nodes to avoid overflow.
The SAR algorithm output node has higher
dynamic range of 11b to prevent the saturation of the output
after subtraction, in case of an overflow/underflow.

Next, to assess the impact of quantization noise induced by
fixed-point computation on template signal accuracy, we deter-
mine the signal-to-noise ratio (SNR) in template signal gener-
ation as a function of the fraction length for the internal nodes
(i.e., number of additional bits beyond 10b in a word-length).
Fig. 4 shows the simulation structure for comparing the per-
formance of the SAR algorithm with fixed-point computation
versus that with floating-point computation by determining the
SNR [31]. and are two quantizers that quantize their in-
puts to the word-length value, whereas quantizes its input to
10b. Fig. 5 depicts the simulated SNR and effective number of
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Fig. 4. Simulation structure for determining the SNR in template signal
generation.

Fig. 5. Simulated SNR and ENOB of template signal generation in the IIR
SAR algorithm with fixed-point computation versus the fraction length for the
two selected values of K.

bits, ENOB, in template signal generation for the two selected
values of , where the SNR is defined as

(6)

with and representing the reference output and quan-
tization noise, respectively. Input is taken to be a 10b-digi-
tized sinusoidal signal with rail-to-rail amplitude (i.e., to
511 in two’s complement format) and a frequency of 0.1 mHz
to capture the underlying assumption that the stimulus artifacts
do not change rapidly with time. Assuming a stimulation fre-
quency of 1 Hz, ’s sampling frequency is also 1 Hz. Clearly,
the system requires a fraction length of 5b to achieve ac-
curacy in template signal generation with . A lower
fraction length would increase the quantization noise and de-
grade the accuracy to , whereas a higher fraction length not
only would increase the requisite hardware resources to support
larger memory size, but also would not offer any significant ben-
efit given that by design the overall system performance would
be limited by that of the neural-recording front-end [3], and not
the DSP unit. Taking into account these considerations related
to dynamic range and fraction length requirements, the selected
number of bits for the internal operation of the SAR algorithm
is shown in Fig. 1.

IV. FPGA IMPLEMENTATION

The DSP unit in Fig. 1, comprising the digital highpass filter
(HPF) and the SAR algorithm circuitry, has been implemented
on an FPGA using the DE2 Development and Educational
Board, which has the Cyclone II device by Altera as its FPGA
platform. Fig. 6 depicts the architecture of the DSP unit in
FPGA implementation, which incorporates a 68b parameter
register, a digital control unit, and a DSP core. The param-
eter register is used to store the user-selectable parameters
for system operation such as the bandwidth setting of the
digital HPF and factor in the SAR algorithm, as well as
memory initialization, memory length, and output-blanking
settings. The memory length (i.e., number of 16b samples) is
determined by the sampling clock frequency and the stimulus
artifact duration. If needed, the blanking feature is used after
template subtraction to remove any residual artifacts in the
output around the rising and falling edges of the artifact where
it rapidly changes with time [21]. The parameter register is
implemented as a standalone circuit block with its own timing
and control operation, which is separate from that of the other
circuit blocks and applied externally. This is because this block
is loaded with the requisite system parameters only once prior
to the experiment and is not synchronously clocked with the
rest of the circuit during SAR algorithm operation.

The digital control unit incorporates counters and finite-state
machines and provides timing, path, and blanking control sig-
nals for the DSP core. The required inputs for the digital control
unit include a stimulus timing signal, system clock and sampling
clock signals, and system parameters such as memory length,
memory initialization, and blanking settings.

The DSP core incorporates a digital HPF, circuitry to exe-
cute the SAR algorithm, and parallel-to-serial converters at the
output. The required inputs for the DSP core include the am-
plified/digitized neural signal (10b), system clock signal, and
control signals provided by the digital control unit. Fig. 6 also
shows the structure of the digital HPF and SAR algorithm cir-
cuitry in the DSP core as implemented on the FPGA. The ampli-
fied/digitized input neural signal is first highpass filtered using
a 1st-order, IIR filter with direct form II architecture. Factor
is the user-selected HPF coefficient that controls the filter band-
width and is selected judiciously to perform the filtering using
arithmetic shifts, subtraction and addition only, with no need
for digital multipliers or dividers [3]. The user can set to
be either 1/16 or 1/8, which results in a filter cutoff frequency
of 366 Hz or 756 Hz, respectively, from a 1-MHz system clock.
Since the digitized data at the analog-to-digital converter (ADC)
output are unsigned numbers (10b), a factor of 512 is subtracted
from the input signal to convert it to two’s complement format
for further processing. In addition, an overflow/underflow de-
tector is used at the HPF output to limit its dynamic range to
10b before feeding it to the SAR algorithm circuitry.

The SAR algorithm only operates for the duration of each
stimulus artifact. The digitized/filtered sample at the output of
the HPF filter (10b) is first converted to 15b via a shift to the
left by 5b and then multiplied by factor (same as in
Fig. 1) stored in the parameter register. Next, the memory data
containing the previous template signal are read, multiplied by
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Fig. 6. Architecture of the DSP unit (top) and structure of the digital HPF and SAR algorithm circuitry in the DSP core (bottom) as implemented on the FPGA.

, and added to to obtain the new template
signal (15b), which is written back into the memory for the
next cycle. The new template signal is also converted back to
10b and subsequently subtracted from the 10b digitized/filtered
input sample to produce the SAR algorithm output signal. Out-
side the duration of the stimulus artifact, the SAR algorithm cir-
cuitry is disabled and the digitized/filtered sample at the HPF
output is directly passed to the output register.

The path control signal from the digital control unit manages
the memory initialization. Specifically, if the recorded stimulus
artifact is the first artifact, indicated as such by the stimulus
timing signal, the path control signal routes the 15b sample di-
rectly to the memory input for its initialization. With the next
indication of stimulation by the stimulus timing signal, the IIR
system executes the SAR algorithm as previously described. If
the memory initialization setting is not enabled by the user, the
memory can be cleared to start with zero internal values, but
this would increase the IIR system response time as previously
shown in Fig. 2.

The 16b, 4K memory is implemented using the internal
SRAM of the FPGA. Even parity is used to check for memory
error, which is generated by an XOR function of all the bits in
each 15b sample. The parity bit is then added to the end of the
data bits before being written into the memory as a 16b sample.
When the memory data are read out, a parity checker checks
for memory error, and this information is sent to the output.
The 15b sample is also sent to the rest of the SAR algorithm
circuitry for template generation. Including the memory parity
check feature, while not entirely necessary for an FPGA-based
system, would streamline the design translation from an FPGA
to an IC platform in the future.

The blanking control signal, which is also received from the
digital control unit, is used to remove any residual artifacts in
the output after template subtraction. Specifically, this control
signal activates a multiplexer that replaces the output data with
“0” for the time period in which blanking is applied, which is
normally at the rising and falling edges of the artifact where it

rapidly changes with time. The user can independently set the
blanking duration around the rising and falling edges from 0
(i.e., no blanking) to 2,047 data points.

The three registers in Fig. 6 are used for pipelining in order
to overlap the processing in each stage and prevent harmful race
conditions with proper timing control. Further, since the SAR
algorithm circuitry operates synchronously with a system clock,
all circuit blocks (except the parameter register) share the same
system clock signal globally and use a local Enable signal for
synchronization [32].

V. FPGA MEASUREMENT RESULTS

The DSP unit as depicted in Fig. 6 has been synthesized and
mapped to the Cyclone II FPGA, EP2C35F672C6, using Al-
tera’s Quartus II design software. The mapped circuitry con-
sumed 2% (656) of the total available logic elements (LEs) and
14% (65,536) of the total available memory bits. The DE2 board
was programmed and connected to a digital data acquisition
(DAQ) card, NI 6541, which provided the input signal to the
FPGA and recorded the output waveforms. The system clock
was applied to the FPGA using the onboard external clock port,
and a supply of 9 V was used to power up the board with its
input-output (I/O) ports at 3.3 V. For all FPGA measurements
described below, factors and (see Fig. 6) were both set
to 1/16.

Two sets of prerecorded neural data from two different labo-
ratories were used to experimentally verify the operation of the
IIR SAR algorithm and its FPGA implementation. Specifically,
a 294-s window of prerecorded neural data from a rat was used
as the first dataset. The rat data were sampled at kHz
and obtained during 4-Hz cortical stimulation. A gain of 520
( dB) was applied to the neural data before feeding it to
the FPGA. The SAR algorithm was set to operate for 5 ms upon
receiving an indication of stimulation by the stimulus timing
signal, and no output blanking was applied.

A 125-s window of prerecorded data from an Aplysia califor-
nica (a marine sea slug) was used as the second neural dataset.
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Fig. 7. FPGA measurement results using prerecorded neural data from a laboratory rat. (a) Top plot shows a 294-s window of the input data to the FPGA. Middle
plot depicts the generated stimulus artifact template signal, whereas the bottom plot shows the IIR system output from the FPGA. Two 5-ms snapshots of the
waveforms are shown at (b) � �� ��� s and (c) � �� ��� s.

The Aplysia data were sampled at 2 kHz and obtained during
0.5-Hz stimulation. A gain of 1,000 (60 dB) was applied to the
neural data before feeding it to the FPGA. Upon receiving an in-
dication of stimulation by the stimulus timing signal, the SAR
algorithm was set to operate for 96 ms (the duration of stim-
ulus artifact in the Aplysia dataset was much longer than that in
the rat dataset), and output blanking was set to occur for 4 ms
synchronized with the rising and falling edges of the stimulus
timing signal. The applied gain values represented those pre-
viously obtained with our neural-recording front-end operating
from 1.5 V [3]. The gain values were high enough to achieve
sufficient resolution at the DSP unit input, while keeping the
amplitude of the amplified neural data below 1.5 V .

Fig. 7 shows the FPGA measurement results using the rat
neural dataset. The top plot in (a) depicts the input neural data
to the FPGA, consisting of neural spikes buried in large stim-
ulus artifacts. The middle plot shows the generated artifact tem-
plate signal after memory initialization as previously described.
Note the fast response time of the IIR SAR algorithm in quickly
generating the template signal even for the initial stimulus ar-
tifacts, as well as how fast the generated template signal tracks
the variation in stimulus artifact amplitude in the first 100 sec-
onds. The bottom plot depicts the IIR system output from the
FPGA in which the large stimulus artifacts are rejected and the
neural data recovered in real time.

Fig. 7(b) and (c) depict 5-ms snapshots of the waveforms at
s and s, respectively, demonstrating that the

system is fully capable of recovering neural action potentials
that occur on the tail end of the artifact [see Fig. 7(c)] or appear
as close as within 0.5 ms after the artifact spike [see Fig. 7(b)].

The slight discrepancy between the amplitude of the input
artifact and that of the template signal is because the template
signal actually represents the highpass filtered artifact.

Fig. 8 shows a 5-s snapshot of the waveforms in Fig. 7(a)
around the onset of stimulation and their corresponding
spectrograms obtained using 1,024-sample windows with
1,000-sample overlap. As can be seen in the top and middle
spectrograms, the artifacts in the rat neural dataset have strong
frequency components below 5 kHz that are significantly re-
duced in the output (see the bottom spectrogram), allowing the
weaker neural activity to emerge from the large artifacts. For
the very first stimulus artifact at just prior to s, which
is the one loaded into the memory for its initialization, the
corresponding template signal would be 1/16th of the artifact
according to (2), and therefore 15/16th of the artifact appears in
the output data after subtraction. The IIR SAR algorithm then
removes all the subsequent stimulus artifacts starting with the
second one. If present, artifact residuals as seen in Figs. 7(b)
and (c) in the time domain and Fig. 8 in the frequency domain
(bottom spectrogram) are now insignificant as compared to the
neural action potentials.
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Fig. 8. A 5-s snapshot of the FPGA measurement results using the prerecorded
rat neural dataset and their corresponding spectrograms. The 5-s snapshot is
taken around the stimulus onset.

Fig. 9. FPGA measurement results using the prerecorded Aplysia neural
dataset and their corresponding spectrograms.

Fig. 9 shows the FPGA measurement results using the
Aplysia neural dataset and their corresponding spectrograms.
The top plot depicts the input neural data to the FPGA, con-
taining many large stimulus artifacts that occur at 0.5 Hz and
bursts of extracellular neural activity that occur in between
and occasionally on the tail end of the artifacts. The middle
plot shows the generated artifact template signal and its spec-
trogram, indicating that the artifacts have their frequency
components spread throughout a 1-kHz bandwidth with strong
frequency components contained below 200 Hz. The bottom
plot shows the FPGA output data after blanking in which all

Fig. 10. Top plot shows a 96-ms portion of the Aplysia neural dataset, showing
a total of 61 unfiltered stimulus artifacts superimposed on each other with some
action potentials riding on the tail end of the artifacts. Middle plot depicts
the 61 stimulus artifact templates superimposed on each other, which actually
represent the highpass filtered artifacts (not shown). Bottom plot shows the
artifact-free FPGA output in which the neural spikes are recovered after
template subtraction. Residual artifacts are also simultaneously removed after
4-ms blanking (arrows). Note the smaller dynamic range of the Y-axis in the
bottom plot after artifact removal and residual blanking.

stimulus artifacts (minus the first one as explained previously)
are successfully removed from the recorded data in real time to
recover the neural activity.

Fig. 10 shows a close-up view of the waveforms during the
96-ms period of operation for the SAR algorithm. The top
plot depicts 61 unfiltered stimulus artifacts superimposed on
each other (i.e., all the artifacts present in the 125-s window
of Aplysia neural dataset minus the very first one), with some
action potentials also occurring on the tail end of the artifacts.
The middle plot shows the corresponding artifact templates
superimposed on each other, whereas the bottom plot depicts
the artifact-free IIR system output from the FPGA after tem-
plate subtraction and 4-ms blanking (arrows) for simultaneous
removal of the artifacts and artifact residuals, respectively,
demonstrating successful operation of the algorithm and its
hardware implementation.

In order to assess the performance of the IIR SAR algorithm
and its hardware implementation in a quantitative manner, a
total of 908 stimulus artifacts (54 of 62 and 854 of 1,000 ar-
tifacts in the Aplysia and rat neural datasets, respectively) were
analyzed. Specifically, the mean and standard deviation of the
root-mean-square (rms) values of the artifacts were computed
pre- and post-processing by the FPGA.

The analysis excluded the very first artifact in each neural
dataset and those artifacts that had action potentials present any-
where in their duration over which the algorithm was operating
(96 ms and 5 ms for the Aplysia and rat artifacts, respectively).
This ensured that the occasional presence of action potentials
did not confound the analysis. The same statistics were also ob-
tained from segments of the FPGA output that represented pure
noise (i.e., absence of both action potentials and artifact resid-
uals). Table I tabulates the results of this analysis. In the case of
Aplysia neural dataset that contains relatively stationary stim-
ulus artifacts (see the top plot in Fig. 9 and note the small stan-
dard deviation value in Table I), the rms value of the artifact
on average is reduced by a factor of 17, resulting in post-pro-
cessed rms values that are at the level of that for the output
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TABLE I
STATISTICS OF PRE- AND POST-PROCESSED STIMULUS ARTIFACTS

Fig. 11. Root-mean-square (rms) value of the stimulus artifacts (854 of 1,000)
in the rat neural dataset pre- and post-processing by the FPGA. The dashed line
represents an average rms value of 5.03 �V for the output noise obtained from
10 different 5-ms segments that did not contain any action potentials or artifact
residuals.

noise. In the case of rat neural dataset that contains both sta-
tionary and non-stationary artifacts (see the top plot in Fig. 7(a)
and note the larger standard deviation value in Table I), the re-
duction in the rms value on average is more modest (a factor of
5.3). A closer look at the rms values of individual stimulus ar-
tifacts pre- and post-processing reveals that the degradation of
performance is limited to when there is a sudden change in the
artifacts (see Fig. 11 and compare its trend with how the arti-
facts are changing in the top plot of Fig. 7(a)), whereas the rms
values of the post-processed artifacts indeed approach that of
the output noise when the artifacts are relatively stationary.

VI. CONCLUSION

This paper reported on a neural signal-processing algorithm
for real-time stimulus artifact rejection (SAR) in which a high-
fidelity template signal representative of the stimulus artifacts
was first generated via temporal filtering and subsequently sub-
tracted from the contaminated neural data to remove the arti-
facts. A system architecture for the IIR implementation of the
algorithm was realized in hardware on an FPGA platform, fea-
turing memory initialization as a simple method to significantly
decrease the IIR system response time for accurate template
generation. The measured FPGA results using two sets of prere-
corded neural data from a rat and an Aplysia californica verified
the functionality of the algorithm and its hardware implementa-
tion by removing the stimulus artifacts in real time from the con-
taminated recorded data and recovering the extracellular neural
activity.

The major advantage of this approach as compared to the
blanking techniques (i.e., disconnecting the recording amplifier

input during stimulation) is that it has the potential to retain
signal information during stimulation while fully eliminating
the artifacts from the contaminated data record in real time. On
the other hand, one limitation of this approach is that it does not
directly address the problem of amplifier saturation and hence
becomes less effective with prolonged amplifier saturation, un-
less care is taken in the design of the recording and stimulating
circuitry to prevent (or at least minimize) amplifier saturation by
decreasing the duration and amplitude of the artifacts [18]–[20].
Another limitation of this approach is that if neural activity oc-
curs on the tail end of the artifact and is time-locked to stim-
ulation, it will be removed by the system along with the arti-
facts. Similarly, if neural activity occurs during the rising/falling
edges of the artifact spike, it will be lost, because it will be either
blanked out by the system or heavily distorted by the residuals
with no blanking.

This technique can potentially handle other stimulation sce-
narios as well, given that it only needs the stimulus timing signal
information for correct operation. For example, if stimulation
occurs simultaneously on two electrodes, a combined stimulus
artifact might appear on the recording electrode that can be re-
moved even by the current system. If stimulation occurs alter-
nately on two electrodes, two different stimulus artifact types
might appear alternately as well on the recording electrode and
can be removed by modifying the timing operation of the system
to handle each artifact type independently, if there is no tem-
poral overlap between the artifacts. Ultimately, a tradeoff exists
between functional versatility and system operation complexity.

Finally, given the relatively low system clock frequency of
MHz in this work and that the synthesized algorithm utilized a
very small percentage of the available FPGA resources, it was
not readily feasible to accurately determine the power consump-
tion in hardware implementation. Efforts are currently under
way for custom implementation of the DSP unit in Fig. 1 on
an IC that would also incorporate recording front-end and stim-
ulating back-end circuitry adapted from [3] to form a complete
system. To that end, our preliminary work shows that the DSP
unit can be implemented with a total area of 3.64 mm (89% oc-
cupied by the 16b, 4K SRAM) in 0.35- m CMOS technology
with power consumption on the order of low-tens of microwatts
from 1.5 V (1-MHz system clock), indicating the feasibility of
running the algorithm on a miniaturized, integrated device in the
near future.

APPENDIX

In this Appendix, we show the derivation of (3) in Section II:
SAR Algorithm. As previously stated, based on Fig. 1

(A1)

where . Hence, it is simple to see that

(A2)
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which means that the template signal for the th artifact can be
written as

(A3)

where is the initial condition of the memory. Assume that
are all equal to the steady-state artifact template

signal, . Therefore

(A4)

where is the initial condition of the memory
normalized to the steady-state artifact template signal. Given the
sum of geometric series, it can be shown that

(A5)

which means that (A4) can be simplified to

(A6)

If , for generating an accurate template signal with error
less than, e.g., 0.1%, one needs to have ,
which means from (A6). Taking a
logarithm of both sides and noting that one
can obtain

(A7)

If , for generating an accurate template signal with error
less than 0.1%, one needs to have , which
ultimately leads to

(A8)
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